High resolution spectroscopy of methyltrioxorhenium: towards the observation of parity violation in chiral molecules.
نویسندگان
چکیده
Originating from the weak interaction, parity violation in chiral molecules has been considered as a possible origin of biohomochirality. We have proposed the observation of molecular parity violation using the two-photon Ramsey fringes technique on a supersonic beam. As a first step in this direction, a detailed spectroscopic study of methyltrioxorhenium (MTO) has been undertaken. It is an ideal test molecule as the achiral parent molecule of chiral candidates for a parity violation experiment. For the (187)Re MTO isotopologue, a combined analysis of Fourier transform microwave and infrared spectra as well as ultra-high resolution CO(2) laser absorption spectra enabled the assignment of 28 rotational lines and 71 rovibrational lines, some of them with a resolved hyperfine structure. A set of spectroscopic parameters in the ground and first excited state, including hyperfine structure constants, was obtained for the ν(as) antisymmetric Re=O stretching mode of this molecule. This result validates the experimental approach to be followed once a chiral derivative of MTO is synthesized, and shows the benefit of the combination of several spectroscopic techniques in different spectral regions, with different set-ups and resolutions. The first high resolution spectra of jet-cooled MTO, obtained on a set-up being developed for the observation of molecular parity violation, are shown, which constitutes a major step towards the targeted objective.
منابع مشابه
Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy.
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take up this challenge, a consortium of physicists, chemists, theoreticians, and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goa...
متن کاملProgress toward a first observation of parity violation in chiral molecules by high-resolution laser spectroscopy
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take this challenge up, a consortium of physicists, chemists, theoreticians and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal...
متن کاملTowards the First Measurement of Parity Violation in Chiral Molecules New Attempts and Future Prospective
متن کامل
HIGH RESOLUTION LASER SPECTROSCOPY IN COLD SUPERSONIC MOLECULAR BEAMS COOLING, REDUCTION OF DOPPLER WIDTH AND APPLICATION
The cooling of molecules during the adiabatic expansion of supersonic seeded molecular beams is reviewed and illustrated by the example of NO -molecules. The reduction of the Doppler width by collimation of the beam and the cooling to low rotational temperatures brings a significant simplification of the complex NO -absorption spectrum and allows its assignment. The measured rotational tem...
متن کاملDetection of parity violation in chiral molecules by external tuning of electroweak optical activity
A proposal is made to measure the parity-violating energy difference between enantiomers of chiral molecules by modifying the dynamics of the two-state system using an external chiral field, in particular, circularly polarized light. The intrinsic molecular parity-violating energy could be compensated by this external chiral field, with the subsequent change in the optical activity. From the ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2011